Structures of $\mathrm{XH}_{4}{ }^{+}$and $\mathrm{XH}_{6}{ }^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga) Cations*

Stefan Salzbrunn, Golam Rasul, G. K. Surya Prakash, and George A. Olah

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California, 90089-1661, USA. E-mail: olah@methyl.usc.edu

Received: 19 October 1999/ Accepted: 14 January 2000/ Published: 28 February 2000

Abstract

Structures and energies of $\mathrm{XH}_{4}{ }^{+}$and $\mathrm{XH}_{6}{ }^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga$)$ have been calculated at the density functional theory (DFT) B3LYP/6-311++G(3df,2pd) level. Calculations indicate that although the structure with a three center two electron (3c-2e) bond is the global minimum for $\mathrm{BH}_{4}{ }^{+}$, the global minima of $\mathrm{AlH}_{4}{ }^{+}$and $\mathrm{GaH}_{4}{ }^{+}$are not those with one $3 \mathrm{c}-2 \mathrm{e}$ bond, but those with two $3 \mathrm{c}-2 \mathrm{e}$ bonds. For calibration, both structures of AlH_{4}^{+}were also calculated at the $a b$ initio $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}$ level and results in agreement with the DFT results were found. Similar calculations also indicate that although the $\mathrm{C}_{2 \mathrm{v}}$ symmetrical structure with two $3 \mathrm{c}-2 \mathrm{e}$ bonds is the global minimum for $\mathrm{BH}_{6}{ }^{+}$, the global minima of $\mathrm{AlH}_{6}{ }^{+}$and $\mathrm{GaH}_{6}{ }^{+}$are not the $\mathrm{C}_{2 \mathrm{v}}$ symmetrical structures with two $3 \mathrm{c}-2 \mathrm{e}$ bonds but the C_{2} symmetrical structures with three $3 \mathrm{c}-2 \mathrm{e}$ bonds.

Keywords Density functional calculations, Boronium ion, Three center two electron bond

Introduction

Recently we reported [1] the $a b$ initio calculated structures of singlet $\mathrm{XH}_{2}{ }^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga$)$. The linear $\mathrm{D}_{\infty h}$ symmetrical structure was preferred for singlet $\mathrm{BH}_{2}{ }^{+}$. However, the global minima of $\mathrm{AlH}_{2}{ }^{+}$and $\mathrm{GaH}_{2}{ }^{+}$are not of linear $\mathrm{D}_{\infty h}$ symmetry but $\mathrm{C}_{2 \mathrm{v}}$ symmetrical with $3 \mathrm{c}-2 \mathrm{e}$ bonds [2] (Scheme 1). The $\mathrm{D}_{\text {}}$ h symmetrical structures of $\mathrm{AlH}_{2}{ }^{+}$and $\mathrm{GaH}_{2}{ }^{+}$were found to be significantly less stable than the

[^0]corresponding $\mathrm{C}_{2 \mathrm{v}}$ symmetrical structures by 13.1 and 21.5 $\mathrm{kcal} \mathrm{mol}^{-1}$, respectively.

In continuation of our study we have now extended our investigations to $\mathrm{XH}_{4}{ }^{+}$and $\mathrm{XH}_{6}{ }^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga$)$ by density functional theory (DFT) calculations. Studies show that although the structure with a three center two electron (3c2e) bond is the global minimum for BH_{4}^{+}, the global minima of AlH_{4}^{+}and GaH_{4}^{+}are not those with one $3 \mathrm{c}-2 \mathrm{e}$ bond but

$\mathrm{X}=\mathrm{B} ; \mathrm{D}_{\infty \mathrm{h}}$ is more stable than $\mathrm{C}_{2 \mathrm{v}}$ $\mathrm{X}=\mathrm{Al}, \mathrm{Ga} ; \mathrm{C}_{2 \mathrm{v}}$ is more stable than $\mathrm{D}_{\infty h}$

Scheme $1 D_{\infty h}$ and $C_{2 v}$ symmetrical structures of $\mathrm{XH}_{2}{ }^{+}$

Table 1 Total energies (-au), ZPE (kcal mol ${ }^{-1}$) [a] and relative energy (kcal mol ${ }^{-1}$) [b]

	B3LYP/ $\mathbf{6 - 3 1 1}++\mathbf{G}(\mathbf{3 d f}, \mathbf{2 p d})$	ZPE	rel. energy
$\mathrm{BH}_{4}{ }^{+} \mathbf{1 a}$	26.85282	21.3	0.0
$\mathrm{BH}_{4}{ }^{+} \mathbf{1 b}$	26.72413	14.4	73.8
$\mathrm{AlH}_{4}{ }^{+} \mathbf{2 a}$	244.52035	16.0	8.9
$\mathrm{AlH}_{4}^{+} \mathbf{2 b}$	244.53083	13.6	0.0
$\mathrm{GaH}_{4}{ }^{+} \mathbf{3 a}$	1926.93681	15.8	22.9
$\mathrm{GaH}_{4}{ }^{+} \mathbf{3 b}$	1926.96961	13.6	13.6
$\mathrm{BH}_{6}{ }^{+} \mathbf{4 a}$	28.07020	33.3	0.00
$\mathrm{AlH}_{6}{ }^{+} \mathbf{5 a}$	245.71310	25.1	4.6
$\mathrm{AlH}_{6}{ }^{+} \mathbf{5 b}$	245.71335	20.7	0.0
$\mathrm{GaH}_{6}{ }^{+} \mathbf{~ 6 a}$	1928.12572	24.3	20.3
$\mathrm{GaH}_{6}{ }^{+} \mathbf{6 b}$	1927.82481	20.1	0.0

[a] zero point vibrational energies (ZPE) at B3LYP/6$311++G(3 d f, 2 p d) / / B 3 L Y P / 6-311++G(3 d f, 2 p d)$ scaled by a factor of 0.96; [b] relative energy based on B3LYP/6$311++G(3 d f, 2 p d) / / B 3 L Y P / 6-311++G(3 d f, 2 p d)+Z P E$
rather those with two 3c-2e bonds. Similar results were also found for the $\mathrm{XH}_{6}^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga$)$ cations, which can be derived by reacting XH_{4}^{+}and H_{2}.

Results and discussion

Calculations were carried out with the Gaussian 98 program.[3] The geometry optimizations and frequency calculations were performed at the DFT [4] B3LYP [5]//6$311++G(3 d f, 2 p d)$ [6] level. Frequency calculations were used to characterize the optimized structures as minima (number of imaginary frequencies $($ NIMAG $)=0$) and to evaluate zero point vibrational energies (ZPE), which were scaled by a factor of 0.96. Final energies were calculated at the B3LYP/6-311++G(3df,2pd)//B3LYP/6-311++G(3df,2pd) + ZPE level. B3LYP/6-311++G(3df,2pd) geometrical parameters and final energies will be discussed throughout, unless stated otherwise. For calibration, geometry optimizations and energy calculations of $\mathrm{AlH}_{4}{ }^{+}$were also carried out with the ab initio coupled cluster method [6] at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}$ [7] level. Calculated energies are given in Table 1.
$\mathrm{XH}_{4}^{+}(X=B, A l$ and $G a)$
$\mathbf{B H}_{\mathbf{4}}{ }^{+}$: Two $\mathrm{C}_{2 \mathrm{v}}$ symmetrical structures, $\mathbf{1 a}$ and $\mathbf{1 b}$ (Figure 1) were found to be minima on the potential energy surface (PES)

Figure 1 B3LYP/6-311++G(3df,2pd) optimized structures of 1-3
of singlet BH_{4}^{+}at the B3LYP/6-311++G(3df,2pd) level, as indicated by frequency calculations at the same level. Structure 1a is, however, $73.8 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than $\mathbf{1 b}$ (Table 1). Structure 1a contains a $3 \mathrm{c}-2 \mathrm{e}$ bond whereas structure $\mathbf{1 b}$ is characterized by two $3 \mathrm{c}-2 \mathrm{e}$ bonds and a formal lone pair on the boron atom. The each 3c-2e interaction in 1b involving boron and a H_{2} molecule can also be considered to involve three center three electron (3c-3e) bonding as there are six total valence electrons including the boron lone pair. However, such 3c-3e bonding involving two hydrogen atoms and boron is highly unlikely.[8] Previously Rasul and Olah [9] and DePuy et al. [10] calculated structure 1a and found similar results. The planar $\mathrm{C}_{2 \mathrm{v}}$ symmetrical structure with a $3 \mathrm{c}-2 \mathrm{e}$ bond is also preferred for $\mathrm{CH}_{4}{ }^{2+}$, as shown by Wong and Radom.[11] The tetracoordinate boronium ion $\mathrm{BH}_{4}{ }^{+}$can be prepared readily[10] in the gas phase.
$\mathbf{A l H}_{4}{ }^{+}: \mathrm{C}_{2 \mathrm{v}}$ structure 2a with a $3 \mathrm{c}-2 \mathrm{e}$ bond and C_{2} structure $\mathbf{2 b}$ with two $3 \mathrm{c}-2 \mathrm{e}$ bonds were also found to be minima on the PES of singlet AlH_{4}^{+}(Figure 1). However, unlike BH_{4}^{+} the structure $\mathbf{2 a}$ is $8.9 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than $\mathbf{2 b}$ (Table

Table $2 \Delta H_{0}$ of deprotonation and dehydrogenation (kcal $\cdot \mathrm{mol}^{-1}$) [a]

reaction					$\Delta \mathrm{H}_{0}$
$\mathrm{BH}_{4}^{+} \mathbf{1 a}$	\rightarrow	BH_{3}	+	H^{+}	138.4
$\mathrm{BH}_{4}^{+} \mathbf{1 a}$	\rightarrow	$\mathrm{BH}_{2}{ }^{+}$	+		16.5
$\mathrm{AlH}_{4}{ }^{+2} \mathbf{2 b}$	\rightarrow	AlH_{3}	+	H^{+}	185.0
$\mathrm{AlH}_{4}+\mathbf{2 b}$	\rightarrow	$\mathrm{AlH}_{2}{ }^{+}$	+	H_{2}	0.8
$\mathrm{GaH}_{4}^{+} \mathbf{3 b}$	\rightarrow	GaH_{3}	+	H^{+}	202.8
$\mathrm{GaH}_{4}^{+} \mathbf{3 b}$	\rightarrow	$\mathrm{GaH}_{2}{ }^{+}$	+	H_{2}	1.2
$\mathrm{BH}_{6}{ }^{+} \mathbf{4 a}$	\rightarrow	BH_{5}	+	H^{+}	156.0
BH_{6}^{+}4a	\rightarrow	$\mathrm{BH}_{4}^{+} \mathbf{1 a}$	+	H_{2}	17.5
$\mathrm{AlH}_{6}+\mathbf{5 b}$	\rightarrow	AlH_{5}	+	H^{+}	186.9
$\mathrm{AlH}_{6}{ }^{+5} \mathbf{5}$	\rightarrow	$\mathrm{AlH}_{4}^{+} \mathbf{2 b}$	+	H_{2}	0.6
$\mathrm{GaH}_{6}{ }^{+} \mathbf{6 b}$	\rightarrow	GaH_{5}	+	H^{+}	205.0
$\mathrm{GaH}_{6}^{+} \mathbf{6 b}$	\rightarrow	$\mathrm{GaH}_{4}^{+} \mathbf{3 b}$	$+$	H_{2}	0.7

[a] B3LYP/6-311++G(3df,2pd)//B3LYP/6-311++G(3df,2pd) $+Z P E$
1). AlH_{4}^{+}is isoelectronic with $\mathrm{SiH}_{4}{ }^{2+}$. Similar to $\mathbf{2 b}$, the $\mathrm{C}_{2 \mathrm{v}}$ structure with two 3c-2e bonds was also calculated to be the global minimum for the singlet $\mathrm{SiH}_{4}{ }^{2+}$.[12] For calibration, structures 2a and 2b were also calculated at the ab initio $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}$ level (total energies are -244.05288 and -244.06242 au, respectively). Zero point vibrational energies (ZPE) of $\mathbf{2 a}$ and $\mathbf{2 b}$ are 16.0 and $13.5 \mathrm{kcal} \mathrm{mol}^{-1}$ calculated at the MP2/6-311++G(3df,2pd)//MP2/6-311++G(3df,2pd) level and scaled by a factor of 0.93 . Thus, at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-$ $\mathrm{pVTZ} / / \mathrm{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}+\mathrm{ZPE}$ level, structure 2a is also $8.5 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than $\mathbf{2 b}$.
$\mathbf{G a H}_{4}^{+}$; Similar to $\mathrm{AlH}_{4}^{+}, \mathrm{C}_{2 \mathrm{v}}$ structure 3a with a $3 \mathrm{c}-2$ e bond and C_{2} structure 3b with two 3c-2e bonds (Figure 1) were found to be minima on the PES of $\mathrm{GaH}_{4}{ }^{+}$. Structure 3a is $22.9 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than 3b (Table 1).
$\mathrm{XH}_{6}^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga$)$
$\mathbf{B H}_{\mathbf{6}}{ }^{+}$: The $\mathrm{C}_{2 \mathrm{v}}$ symmetrical $\mathbf{4 a}$ was found to be the only stable minimum for the singlet hexacoordinated boronium ion $\mathrm{BH}_{6}{ }^{+}$at the B3LYP/6-311++G(3df,2pd) level. Structure 4a, isoelectronic as well as isostructural [13] with $\mathrm{CH}_{6}{ }^{2+}$, was previously calculated $[9,10]$ using ab initio methods and similar results as reported here were found. Structure $\mathbf{4 a}$ contains two 3c-2e bonds and two 2c-2e bonds (Figure 2). The $\mathrm{BH}_{6}{ }^{+}$ ion was generated in the gas phase by DePuy et al.[10] Attempts to find a third 3c-2e bonded stable minimum of $\mathrm{BH}_{6}{ }^{+}$ (similar to $\mathbf{5 b}$ of $\mathrm{AlH}_{6}{ }^{+}$as discussed next) failed because of rearrangement to form the more stable $\mathbf{4 a}$.
$\mathbf{A l H}_{\mathbf{6}}{ }^{+}$: The $\mathrm{C}_{2 \mathrm{v}}$ symmetrical structure $\mathbf{5 a}$ and C_{3} symmetrical 5b were found to be the stable minima for singlet $\mathrm{AlH}_{6}{ }^{+}$ (Figure 2). Previously Olah and Rasul [14] reported the struc-

$\mathrm{BH}_{6}+\mathbf{4 a}\left(\mathrm{C}_{2 \mathrm{v}}\right)$

$\mathrm{AlH}_{6}{ }^{+} \mathbf{5 a}\left(\mathrm{C}_{2 \mathrm{v}}\right)$

$\mathrm{GaH}_{6}{ }^{+} \mathbf{6 a}\left(\mathrm{C}_{2 \mathrm{v}}\right)$

$\mathrm{AlH}_{6}{ }^{+} \mathbf{5 b}\left(\mathrm{C}_{3}\right)$

$\mathrm{GaH}_{6}{ }^{+} \mathbf{6 b}\left(\mathrm{C}_{3}\right)$

Figure 2 B3LYP/6-311++G(3df,2pd) optimized structures of 4-6
ture 5a calculated by ab initio methods. Structure 5a contains two $3 \mathrm{c}-2 \mathrm{e}$ bonds and two $2 \mathrm{c}-2 \mathrm{e}$ bonds. Structure 5b is characterized by three $3 \mathrm{c}-2 \mathrm{e}$ bonds and a formal lone pair on the aluminum atom. Energetically, however, structure 5a, is $4.6 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the structure $\mathbf{5 b}$.
$\mathbf{G a H}_{6}{ }^{+}$; Similar to $\mathrm{AlH}_{6}{ }^{+}, \mathrm{C}_{2 \mathrm{v}}$ symmetrical $\mathbf{6 a}$ and C_{3} symmetrical $\mathbf{6 b}$ (Figure 2) were found to be minima on the PES of $\mathrm{GaH}_{6}{ }^{+}$. The structure $\mathbf{6 a}$ with two $3 \mathrm{c}-2 \mathrm{e}$ bonds was found to be $20.3 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than $\mathbf{6 b}$ with three $3 \mathrm{c}-2 \mathrm{e}$ bonds (Table 1).

In the higher analogs of $\mathrm{XH}_{4}^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga$)$, structures with two 3c-2e bonds are increasingly more favorable than the structures with one $3 \mathrm{c}-2 \mathrm{e}$ bond. Similarly, in the higher analogs of $\mathrm{XH}_{6}{ }^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga$)$ structures with three $3 \mathrm{c}-2 \mathrm{e}$ bonds are increasingly more favorable than the structures with two 3c-2e bonds. A similar trend was found in the series $\mathrm{XH}_{2}{ }^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga$)[2], \mathrm{XH}_{3}{ }^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga) [15] and $\mathrm{XH}_{3}{ }^{+}(\mathrm{X}=\mathrm{C}, \mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}$ and Pb$)$.[16] Structures 1-3b can be considered as donor-acceptor complexes of two H_{2} and $\mathrm{X}^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga). Similarly, structures 5-6b
can be considered as donor-acceptor complexes of three H_{2} and $\mathrm{X}^{+}(\mathrm{X}=\mathrm{Al}$ and Ga$)$. The nature of the interaction between donor and acceptor of the complexes depends on the relative electron transfer ability of the $\sigma_{\mathrm{H}-\mathrm{H}}$ to the empty p orbital at X. Therefore, the stability of the bent structures depends on the size as well as the electronegativity of the X . Localization of lone pair of electrons thus readily takes place at the heavier atoms (inert pair effect).[17]

The relative stabilities of $\mathrm{XH}_{4}{ }^{+}$and $\mathrm{XH}_{6}{ }^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and $\mathrm{Ga})$ towards deprotonation were calculated (Table 2). Deprotonation of $\mathrm{BH}_{4}{ }^{+} \mathbf{1 a}$ is disfavored by $138.4 \mathrm{kcal} \mathrm{mol}^{-1}$. On the other hand, deprotonation of $\mathbf{2 b}$ and $\mathbf{3 b}$ are disfavored by 185.0 and $202.8 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. Deprotonation of $\mathrm{XH}_{6}^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga$)$ were also found to be highly unfavorable by $156-205 \mathrm{kcal} \mathrm{mol}^{-1}$.

Relative stabilities of the most stable isomers of $\mathrm{XH}_{4}{ }^{+}$and $\mathrm{XH}_{6}{ }^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga$)$ towards dissociation into $\mathrm{XH}_{2}{ }^{+}$and H_{2} and $\mathrm{XH}_{4}{ }^{+}$and H_{2}, respectively, were also calculated and listed in Table 2. The dissociation of boron complex 1a is disfavored by $16.5 \mathrm{kcal} \mathrm{mol}^{-1}$. On the other hand, dissociation of aluminum and gallium complexes $\mathbf{2 b}$ and $\mathbf{3 b}$ are disfavored by only 0.8 and $1.0 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. The dissociation of hexacoordinated complexes $\mathbf{4 a}, \mathbf{5 b}$ and $\mathbf{6 b}$ are disfavored by $17.5,0.6$ and $0.7 \mathrm{kcal} \mathrm{mol}^{-1}$ respectively. Thus, thermodynamically tetra- and hexacoordinated aluminum and gallium complexes $\mathbf{3 - 4 b}$ and $\mathbf{5 - 6 b}$ are unstable towards dehydrogenation.

Conclusions

The structures of $\mathrm{XH}_{4}{ }^{+}$and $\mathrm{XH}_{6}{ }^{+}(\mathrm{X}=\mathrm{B}, \mathrm{Al}$ and Ga$)$ have been calculated by using DFT theory. The present DFT study at the B3LYP/6-311++G(3df,2pd) level indicates that although the structure 1a with a $3 \mathrm{c}-2 \mathrm{e}$ bond is the global minimum for $\mathrm{BH}_{4}{ }^{+}$, the global minima of $\mathrm{AlH}_{4}{ }^{+}$and GaH_{4}^{+}are not $\mathbf{2 a}$ and 3a with $3 \mathrm{c}-2 \mathrm{e}$ bonds, but $\mathbf{2 b}$ and $\mathbf{3 b}$, respectively, with two $3 \mathrm{c}-2 \mathrm{e}$ bonds and a localized lone pair. Similar studies also indicate that the global minimum structure of the singlet $\mathrm{AlH}_{6}{ }^{+}$ and $\mathrm{GaH}_{6}{ }^{+}$are C_{3} symmetrical $\mathbf{5 b}$ and $\mathbf{6 b}$ with three $3 \mathrm{c}-2 \mathrm{e}$ bonds.

Acknowledgement Support of our work by the National Science Foundation is gratefully acknowledged.

Supplementary material available Cartesian coordinates of the B3LYP/6-311++G(3df,2pd) optimized structures of 1-6 in XYZ format.

References

1. Rasul, G.; Prakash, G. K. S.; Olah, G. A. J. Phys. Chem.; in press
2. Olah, G. A.; Prakash, G. K. S.; Williams, R. E.; Field, L. D.; Wade, K. Hypercarbon Chemistry; Wiley \& Sons: New York, 1987.
3. Gaussian 98 (Revision A.5), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann,
R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, R. E.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Pople, J. A., Gaussian, Inc., Pittsburgh, PA, 1998.
4. Ziegler, T. Chem. Rev. 1991, 91, 651.
5. Becke's Three Parameter Hybrid Method Using the LYP Correlation Functional: Becke, A. D. J. Chem. Phys, 1993, 98, 5648.
6. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley \& Sons: New York, 1986.
7. Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.
8. Akiba, K. Chemistry of Hypervalent Compounds; WileyVCH: New York, 1999.
9. Rasul, G.; Olah, G. A. Inorg. Chem. 1997, 36, 1278.
10. (a) DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E. J. Am. Chem. Soc. 1997, 119, 427. (b) DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E.; Krempp, M.; Damrauer, R. J. Am. Chem. Soc. 1998, 120, 5086.
11. Wong, M. W.; Radom, L. J. Am. Chem. Soc. 1989, 111, 1155.
12. Rasul, G.; Olah, G. A. Inorg. Chem. 1999, 38, 4132.
13. (a) Lammertsma, K.; Olah, G. A.; Barzaghi, M.; Simonetta, M. J. Am. Chem. Soc. 1982, 104, 6851. (b) Lammertsma, K.; Barzaghi, M.; Olah, G. A.; Pople, J. A.; Schleyer, P. v. R.; Simonetta, M. J. Am. Chem. Soc. 1983, 105, 5258.
14. Olah, G. A.; Rasul, G. Inorg. Chem. 1998, 37, 2047.
15. Rasul, G.; Prakash, G. K. S.; Olah, G. A. J. Mol. Struct. (THEOCHEM) 1998, 455, 101.
16. Kapp, J.; Schreiner, P. R.; Schleyer, P. v. R. J. Am. Chem. Soc. 1996, 118, 12154.
17. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry; Wiley \& Sons: New York, 1988; p 208.

[^0]: Correspondence to: G. A. Olah
 [*] Chemistry in Superacids. Part 49. For Part 48 see: Rasul, G.; Prakash, G. K. S.; Olah, G. A. Inorg. Chem. 1999, 38, 5876.

 Dedicated to Professor Paul von Ragué Schleyer on the occasion of his $70^{\text {th }}$ birthday with friendship and admiration

