FULL PAPER

© Springer-Verlag 2000

Structures of XH_4^+ and XH_6^+ (X = B, AI and Ga) Cations^{*}

Stefan Salzbrunn, Golam Rasul, G. K. Surya Prakash, and George A. Olah

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California, 90089-1661, USA. E-mail: olah@methyl.usc.edu

Received: 19 October 1999/ Accepted: 14 January 2000/ Published: 28 February 2000

Abstract Structures and energies of XH_4^+ and $XH_6^+(X = B$, Al and Ga) have been calculated at the density functional theory (DFT) B3LYP/6-311++G(3df,2pd) level. Calculations indicate that although the structure with a three center two electron (3c-2e) bond is the global minimum for BH_4^+ , the global minima of AlH_4^+ and GaH_4^+ are not those with one 3c-2e bond, but those with two 3c-2e bonds. For calibration, both structures of AlH_4^+ were also calculated at the *ab initio* CCSD(T)/cc-pVTZ level and results in agreement with the DFT results were found. Similar calculations also indicate that although the C_{2v} symmetrical structure with two 3c-2e bonds is the global minimum for BH_6^+ , the global minima of AlH_6^+ are not the C_{2v} symmetrical structures with two 3c-2e bonds but the C_2 symmetrical structures with two 3c-2e bonds but the C_2 symmetrical structures with two 3c-2e bonds.

Keywords Density functional calculations, Boronium ion, Three center two electron bond

Introduction

Recently we reported [1] the *ab initio* calculated structures of singlet XH_2^+ (X = B, Al and Ga). The linear D_{ooh} symmetrical structure was preferred for singlet BH_2^+ . However, the global minima of AlH_2^+ and GaH_2^+ are not of linear D_{ooh} symmetry but C_{2v} symmetrical with 3c-2e bonds [2] (Scheme 1). The D_{ooh} symmetrical structures of AlH_2^+ and GaH_2^+ were found to be significantly less stable than the corresponding C_{2v} symmetrical structures by 13.1 and 21.5 kcal mol⁻¹, respectively.

In continuation of our study we have now extended our investigations to XH_4^+ and XH_6^+ (X = B, Al and Ga) by density functional theory (DFT) calculations. Studies show that although the structure with a three center two electron (3c-2e) bond is the global minimum for BH_4^+ , the global minima of AlH_4^+ and GaH_4^+ are not those with one 3c-2e bond but

X = B; $D_{\infty h}$ is more stable than C_{2v} X = Al, Ga; C_{2v} is more stable than $D_{\infty h}$

Scheme 1 $D_{\infty h}$ and C_{2v} symmetrical structures of XH_2^+

Correspondence to: G. A. Olah

^[*] Chemistry in Superacids. Part 49. For Part 48 see: Rasul, G.; Prakash, G. K. S.; Olah, G. A. Inorg. Chem. **1999**, 38, 5876.

Dedicated to Professor Paul von Ragué Schleyer on the occasion of his 70th birthday with friendship and admiration

Table 1 Total energies (-au), ZPE (kcal mol⁻¹) [a] and relative energy (kcal mol⁻¹) [b]

	B3LYP/ 6-311++G(3df,2pd)	ZPE	rel. energy 0.0 73.8	
BH ₄ ⁺ 1a BH ₄ ⁺ 1b	26.85282 26.72413	21.3 14.4		
$ \begin{array}{l} \text{AlH}_4^+ \ \mathbf{2a} \\ \text{AlH}_4^+ \ \mathbf{2b} \end{array} $	244.52035	16.0	8.9	
	244.53083	13.6	0.0	
$GaH_4^+ 3a GaH_4^+ 3b$	1926.93681	15.8	22.9	
	1926.96961	13.6	13.6	
BH_{6}^{+} 4a	28.07020	33.3	0.00	
$ \begin{array}{l} \text{AlH}_6^+ \textbf{5a} \\ \text{AlH}_6^+ \textbf{5b} \end{array} $	245.71310	25.1	4.6	
	245.71335	20.7	0.0	
$\operatorname{GaH}_{6}^{+} \mathbf{6a}$	1928.12572	24.3	20.3	
$\operatorname{GaH}_{6}^{+} \mathbf{6b}$	1927.82481	20.1	0.0	

[a] zero point vibrational energies (ZPE) at B3LYP/6-311++G(3df,2pd)//B3LYP/6-311++G(3df,2pd) scaled by a factor of 0.96; [b] relative energy based on B3LYP/6-311++G(3df,2pd)//B3LYP/6-311++G(3df,2pd) + ZPE

rather those with two 3c-2e bonds. Similar results were also found for the $XH_6^+(X = B, Al and Ga)$ cations, which can be derived by reacting XH_4^+ and H_2 .

Results and discussion

Calculations were carried out with the Gaussian 98 program.[3] The geometry optimizations and frequency calculations were performed at the DFT [4] B3LYP [5]//6-311++G(3df,2pd) [6] level. Frequency calculations were used to characterize the optimized structures as minima (number of imaginary frequencies (NIMAG) = 0) and to evaluate zero point vibrational energies (ZPE), which were scaled by a factor of 0.96. Final energies were calculated at the B3LYP/6-311++G(3df,2pd)//B3LYP/6-311++G(3df,2pd) + ZPE level. B3LYP/6-311++G(3df,2pd) geometrical parameters and final energies will be discussed throughout, unless stated otherwise. For calibration, geometry optimizations and energy calculations of AlH₄⁺ were also carried out with the *ab initio* coupled cluster method [6] at the CCSD(T)/cc-pVTZ [7] level. Calculated energies are given in Table 1.

 XH_4^+ (X = B, Al and Ga)

 BH_4^+ : Two C_{2v} symmetrical structures, **1a** and **1b** (Figure 1) were found to be minima on the potential energy surface (PES)

Figure 1 B3LYP/6-311++G(3df,2pd) optimized structures of 1-3

of singlet BH₄⁺ at the B3LYP/6-311++G(3df,2pd) level, as indicated by frequency calculations at the same level. Structure 1a is, however, 73.8 kcal mol⁻¹ more stable than 1b (Table 1). Structure 1a contains a 3c-2e bond whereas structure 1b is characterized by two 3c-2e bonds and a formal lone pair on the boron atom. The each 3c-2e interaction in 1b involving boron and a H2 molecule can also be considered to involve three center three electron (3c-3e) bonding as there are six total valence electrons including the boron lone pair. However, such 3c-3e bonding involving two hydrogen atoms and boron is highly unlikely.[8] Previously Rasul and Olah [9] and DePuy et al. [10] calculated structure 1a and found similar results. The planar C_{2v} symmetrical structure with a 3c-2e bond is also preferred for CH_4^{2+} , as shown by Wong and Radom.[11] The tetracoordinate boronium ion BH₄⁺ can be prepared readily[10] in the gas phase.

AlH₄⁺: C_{2v} structure **2a** with a 3c-2e bond and C₂ structure **2b** with two 3c-2e bonds were also found to be minima on the PES of singlet AlH₄⁺ (Figure 1). However, unlike BH₄⁺ the structure **2a** is 8.9 kcal mol⁻¹ less stable than **2b** (Table

Table 2 ΔH_0 of deprotonation and dehydrogenation (kcal·mol⁻¹) [a]

re	eaction				$\Delta \mathbf{H_0}$
BH_4^+ 1a	\rightarrow	BH ₃	+	H^+	138.4
BH_4^+ 1a	\rightarrow	BH_2^{+}	+	Η,	16.5
AlH_4^+ 2b	\rightarrow	AlH_3	+	$\tilde{H^{+}}$	185.0
AlH_4^+ 2b	\rightarrow	AlH_2^+	+	H_2	0.8
GaH_4^+ 3b	\rightarrow	GaH ₃	+	$\tilde{\mathrm{H}^{+}}$	202.8
GaH_4^+ 3b	\rightarrow	GaH_2^+	+	Η,	1.2
BH_6^+ 4a	\rightarrow	BH	+	$\tilde{H^{+}}$	156.0
BH_6^{+} 4a	\rightarrow	$\operatorname{BH}_{4}^{+}\mathbf{1a}$	+	H_2	17.5
AlH_6^+ 5b	\rightarrow	AlH ₅	+	$\tilde{H^+}$	186.9
AlH_6^+ 5b	\rightarrow	AlH_4^+ 2b	+	Η,	0.6
$\operatorname{GaH}_{6}^{+} \mathbf{6b}$	\rightarrow	GaH ₅	+	H^{+}	205.0
$\operatorname{GaH}_{6}^{+}\mathbf{6b}$	\rightarrow	$\operatorname{GaH}_{4}^{+}\mathbf{3b}$	+	H_2	0.7

[*a*] *B3LYP/6-311++G(3df,2pd)//B3LYP/6-311++G(3df,2pd)* + *ZPE*

1). AlH₄⁺ is isoelectronic with SiH₄²⁺. Similar to **2b**, the C_{2v} structure with two 3c-2e bonds was also calculated to be the global minimum for the singlet SiH₄²⁺.[12] For calibration, structures **2a** and **2b** were also calculated at the *ab initio* CCSD(T)/cc-pVTZ level (total energies are -244.05288 and -244.06242 au, respectively). Zero point vibrational energies (ZPE) of **2a** and **2b** are 16.0 and 13.5 kcal mol⁻¹ calculated at the MP2/6-311++G(3df,2pd)//MP2/6-311++G(3df,2pd) level and scaled by a factor of 0.93. Thus, at the CCSD(T)/cc-pVTZ//CCSD(T)/cc-pVTZ + ZPE level, structure **2a** is also 8.5 kcal mol⁻¹ less stable than **2b**.

GaH₄⁺; Similar to AlH₄⁺, C_{2v} structure **3a** with a 3c-2e bond and C₂ structure **3b** with two 3c-2e bonds (Figure 1) were found to be minima on the PES of GaH₄⁺. Structure **3a** is 22.9 kcal mol⁻¹ less stable than **3b** (Table 1).

XH_6^+ (X = B, Al and Ga)

BH₆⁺: The C_{2v} symmetrical **4a** was found to be the only stable minimum for the singlet hexacoordinated boronium ion BH₆⁺ at the B3LYP/6-311++G(3df,2pd) level. Structure **4a**, isoelectronic as well as isostructural [13] with CH₆²⁺, was previously calculated [9,10] using *ab initio* methods and similar results as reported here were found. Structure **4a** contains two 3c-2e bonds and two 2c-2e bonds (Figure 2). The BH₆⁺ ion was generated in the gas phase by DePuy *et al.*[10] Attempts to find a third 3c-2e bonded stable minimum of BH₆⁺ (similar to **5b** of AlH₆⁺ as discussed next) failed because of rearrangement to form the more stable **4a**.

AlH₆⁺: The C_{2v} symmetrical structure **5a** and C₃ symmetrical **5b** were found to be the stable minima for singlet AlH_6^+ (Figure 2). Previously Olah and Rasul [14] reported the struc-

Figure 2 B3LYP/6-311++G(3df,2pd) optimized structures of 4 - 6

ture **5a** calculated by *ab initio* methods. Structure **5a** contains two 3c-2e bonds and two 2c-2e bonds. Structure **5b** is characterized by three 3c-2e bonds and a formal lone pair on the aluminum atom. Energetically, however, structure **5a**, is $4.6 \text{ kcal mol}^{-1}$ less stable than the structure **5b**.

 GaH_6^+ ; Similar to AlH_6^+ , C_{2v} symmetrical **6a** and C_3 symmetrical **6b** (Figure 2) were found to be minima on the PES of GaH_6^+ . The structure **6a** with two 3c-2e bonds was found to be 20.3 kcal mol⁻¹ less stable than **6b** with three 3c-2e bonds (Table 1).

In the higher analogs of XH_4^+ (X = B, Al and Ga), structures with two 3c-2e bonds are increasingly more favorable than the structures with one 3c-2e bond. Similarly, in the higher analogs of XH_6^+ (X = B, Al and Ga) structures with three 3c-2e bonds are increasingly more favorable than the structures with two 3c-2e bonds. A similar trend was found in the series XH_2^+ (X = B, Al and Ga)[2], XH_3^+ (X = B, Al and Ga) [15] and XH_3^+ (X = C, Si, Ge, Sn and Pb).[16] Structures **1-3b** can be considered as donor-acceptor complexes of two H₂ and X⁺ (X = B, Al and Ga). Similarly, structures **5-6b** can be considered as donor-acceptor complexes of three H₂ and X⁺ (X = Al and Ga). The nature of the interaction between donor and acceptor of the complexes depends on the relative electron transfer ability of the σ_{H-H} to the empty p orbital at X. Therefore, the stability of the bent structures depends on the size as well as the electronegativity of the X. Localization of lone pair of electrons thus readily takes place at the heavier atoms (inert pair effect).[17]

The relative stabilities of XH_4^+ and XH_6^+ (X = B, Al and Ga) towards deprotonation were calculated (Table 2). Deprotonation of BH_4^+ **1a** is disfavored by 138.4 kcal mol⁻¹. On the other hand, deprotonation of **2b** and **3b** are disfavored by 185.0 and 202.8 kcal mol⁻¹, respectively. Deprotonation of XH_6^+ (X = B, Al and Ga) were also found to be highly unfavorable by 156 - 205 kcal mol⁻¹.

Relative stabilities of the most stable isomers of XH_4^+ and XH_6^+ (X = B, Al and Ga) towards dissociation into XH_2^+ and H_2 and XH_4^+ and H_2 , respectively, were also calculated and listed in Table 2. The dissociation of boron complex **1a** is disfavored by 16.5 kcal mol⁻¹. On the other hand, dissociation of aluminum and gallium complexes **2b** and **3b** are disfavored by only 0.8 and 1.0 kcal mol⁻¹, respectively. The dissociation of hexacoordinated complexes **4a**, **5b** and **6b** are disfavored by 17.5, 0.6 and 0.7 kcal mol⁻¹ respectively. Thus, thermodynamically tetra- and hexacoordinated aluminum and gallium complexes **3-4b** and **5-6b** are unstable towards dehydrogenation.

Conclusions

The structures of XH_4^+ and XH_6^+ (X = B, Al and Ga) have been calculated by using DFT theory. The present DFT study at the B3LYP/6-311++G(3df,2pd) level indicates that although the structure **1a** with a 3c-2e bond is the global minimum for BH₄⁺, the global minima of AlH₄⁺ and GaH₄⁺ are not **2a** and **3a** with 3c-2e bonds, but **2b** and **3b**, respectively, with two 3c-2e bonds and a localized lone pair. Similar studies also indicate that the global minimum structure of the singlet AlH₆⁺ and GaH₆⁺ are C₃ symmetrical **5b** and **6b** with three 3c-2e bonds.

Acknowledgement Support of our work by the National Science Foundation is gratefully acknowledged.

Supplementary material available Cartesian coordinates of the B3LYP/6-311++G(3df,2pd) optimized structures of **1-6** in XYZ format.

References

- 1. Rasul, G.; Prakash, G. K. S.; Olah, G. A. J. Phys. Chem.; in press
- Olah, G. A.; Prakash, G. K. S.; Williams, R. E.; Field, L. D.; Wade, K. *Hypercarbon Chemistry*; Wiley & Sons: New York, 1987.
- 3. Gaussian 98 (Revision A.5), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, R. E.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Pople, J. A., Gaussian, Inc., Pittsburgh, PA, 1998.
- 4. Ziegler, T. Chem. Rev. 1991, 91, 651.
- 5. Becke's Three Parameter Hybrid Method Using the LYP Correlation Functional: Becke, A. D. *J. Chem. Phys*, **1993**, *98*, 5648.
- Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley & Sons: New York, 1986.
- 7. Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.
- Akiba, K. Chemistry of Hypervalent Compounds; Wiley-VCH: New York, 1999.
- 9. Rasul, G.; Olah, G. A. Inorg. Chem. 1997, 36, 1278.
- (a) DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E. J. Am. Chem. Soc. 1997, 119, 427. (b) DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E.; Krempp, M.; Damrauer, R. J. Am. Chem. Soc. 1998, 120, 5086.
- 11. Wong, M. W.; Radom, L. J. Am. Chem. Soc. 1989, 111, 1155.
- 12. Rasul, G.; Olah, G. A. Inorg. Chem. 1999, 38, 4132.
- 13. (a) Lammertsma, K.; Olah, G. A.; Barzaghi, M.; Simonetta, M. J. Am. Chem. Soc. 1982, 104, 6851. (b) Lammertsma, K.; Barzaghi, M.; Olah, G. A.; Pople, J. A.; Schleyer, P. v. R.; Simonetta, M. J. Am. Chem. Soc. 1983, 105, 5258.
- 14. Olah, G. A.; Rasul, G. Inorg. Chem. 1998, 37, 2047.
- 15. Rasul, G.; Prakash, G. K. S.; Olah, G. A. J. Mol. Struct. (THEOCHEM) 1998, 455, 101.
- Kapp, J.; Schreiner, P. R.; Schleyer, P. v. R. J. Am. Chem. Soc. 1996, 118, 12154.
- Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry; Wiley & Sons: New York, 1988; p 208.

J.Mol.Model. (electronic publication) – ISSN 0948–5023